Machine learning components in deterministic models: hybrid synergy in the age of data

نویسندگان

  • Evan B. Goldstein
  • Giovanni Coco
چکیده

Physics-based numerical models designed to study processes on the surface of the Earth are commonly built with conservation laws. Yet conservations laws are based on a treatable subset of all physical and biological processes operating in the system of interest, and empirical relationships are always required to fully describe systems (and provide mathematical “closure”). In contrast to conservation laws, empirical expressions used in model construction are inductive, and based on observations of phenomena. Any model that requires empirical expressions is also subject to revision as the empirical parameterization is refined: all empiricism is open to revision by corroborating or conflicting data. As more data becomes available, and more degrees of freedom are explored, it becomes harder to incorporate all available data into a single optimal empirical predictor. We argue in this contribution that empirical parameterizations for numerical models should be constructed using machine learning techniques because these techniques are built to operate on large, high dimensional datasets. Machine learning, in the context of this paper, defines a suite of algorithms used to develop predictive relationships (correlations) using a set of input data. Examples of commonly used machine learning techniques in the Earth sciences are artificial neural networks (e.g., Maier and Dandy, 2000; Pape et al., 2007; van Maanen et al., 2010), regression trees (e.g., Snelder et al., 2009; Oehler et al., 2012), Bayesian networks (e.g., Aguilera et al., 2011; Yates and Le Cozannet, 2012), and evolutionary algorithms (e.g., Knaapen and Hulscher, 2002; Ruessink, 2005; Goldstein et al., 2013). Machine learning techniques offer insight and are high-performance, reproducible, and scalable. The inclusion of powerful inductive techniques like those provided by machine learning offers the opportunity to enhance the predictions obtained from deductive approaches. Additionally the use of machine learning often leads to further insight. The use of empiricisms built from machine learning in a physics-based model results in a “hybrid” model. Combining the strengths of inductive (data-driven) and deductive (physics-based) approaches in a single hybrid model has been suggested as a valuable step forward in model development because of increases in accuracy (e.g., Babovic et al., 2001; Hall, 2004) and speed (Krasnopolsky and Fox-Rabinovitz, 2006). An additional benefit is the direct coupling of models to data,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms

PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...

متن کامل

A Hybrid Machine Learning Method for Intrusion Detection

Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

EVELOPMENT OF ANFIS-PSO, SVR-PSO, AND ANN-PSO HYBRID INTELLIGENT MODELS FOR PREDICTING THE COMPRESSIVE STRENGTH OF CONCRETE

Concrete is the second most consumed material after water and the most widely used construction material in the world. The compressive strength of concrete is one of its most important mechanical properties, which highly depends on its mix design. The present study uses the intelligent methods with instance-based learning ability to predict the compressive strength of concrete. To achieve this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015